Symmetric exclusion as a random environment: Invariance principle
نویسندگان
چکیده
منابع مشابه
Quenched invariance principle for random walks in balanced random environment
We consider random walks in a balanced random environment in Z , d ≥ 2. We first prove an invariance principle (for d ≥ 2) and the transience of the random walks when d ≥ 3 (recurrence when d = 2) in an ergodic environment which is not uniformly elliptic but satisfies certain moment condition. Then, using percolation arguments, we show that under mere ellipticity, the above results hold for ran...
متن کاملRotational invariance and the Pauli exclusion principle
In this article, the rotational invariance of entangled quantum states is investigated as a possible cause of the Pauli exclusion principle. First, it is shown that a certain class of rotationally invariant states can only occur in pairs. This will be referred to as the coupling principle. This in turn suggests a natural classification of quantum systems into those containing coupled states and...
متن کاملQuenched Invariance Principle for Multidimensional Ballistic Random Walk in a Random Environment with a Forbidden Direction
We consider a ballistic random walk in an i.i.d. random environment that does not allow retreating in a certain fixed direction. We prove an invariance principle (functional central limit theorem) under almost every fixed environment. The assumptions are nonnestling, at least two spatial dimensions, and a 2 + ε moment for the step of the walk uniformly in the environment. The main point behind ...
متن کاملA Nonconventional Invariance Principle for Random Fields
In [16] we obtained a nonconventional invariance principle (functional central limit theorem) for sufficiently fast mixing stochastic processes with discrete and continuous time. In this paper we derive a nonconventional invariance principle for sufficiently well mixing random fields.
متن کاملAn almost sure invariance principle for random walks in a space-time random environment
We consider a discrete time random walk in a space-time i.i.d. random environment. We use a martingale approach to show that the walk is diffusive in almost every fixed environment. We improve on existing results by proving an invariance principle and considering environments with an L2 averaged drift. We also state an a.s. invariance principle for random walks in general random environments wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Probability
سال: 2020
ISSN: 0091-1798
DOI: 10.1214/20-aop1466